This event has ended. View the official site or create your own event → Check it out
This event has ended. Create your own
View analytic
Wednesday, December 9 • 19:00 - 23:59
Efficient and Robust Automated Machine Learning

Sign up or log in to save this to your schedule and see who's attending!

The success of machine learning in a broad range of applications has led to an ever-growing demand for machine learning systems that can be used off the shelf by non-experts. To be effective in practice, such systems need to automatically choose a good algorithm and feature preprocessing steps for a new dataset at hand, and also set their respective hyperparameters. Recent work has started to tackle this automated machine learning (AutoML) problem with the help of efficient Bayesian optimization methods. In this work we introduce a robust new AutoML system based on scikit-learn (using 15 classifiers, 14 feature preprocessing methods, and 4 data preprocessing methods, giving rise to a structured hypothesis space with 110 hyperparameters). This system, which we dub auto-sklearn, improves on existing AutoML methods by automatically taking into account past performance on similar datasets, and by constructing ensembles from the models evaluated during the optimization. Our system won the first phase of the ongoing ChaLearn AutoML challenge, and our comprehensive analysis on over 100 diverse datasets shows that it substantially outperforms the previous state of the art in AutoML. We also demonstrate the performance gains due to each of our contributions and derive insights into the effectiveness of the individual components of auto-sklearn.

Wednesday December 9, 2015 19:00 - 23:59
210 C #20

Attendees (5)