This event has ended. View the official site or create your own event → Check it out
This event has ended. Create your own
View analytic
Monday, December 7 • 19:00 - 23:59
Halting in Random Walk Kernels

Sign up or log in to save this to your schedule and see who's attending!

Random walk kernels measure graph similarity by counting matching walks in two graphs. In their most popular form of geometric random walk kernels, longer walks of length $k$ are downweighted by a factor of $\lambda^k$ ($\lambda < 1$) to ensure convergence of the corresponding geometric series. We know from the field of link prediction that this downweighting often leads to a phenomenon referred to as halting: Longer walks are downweighted so much that the similarity score is completely dominated by the comparison of walks of length 1. This is a naive kernel between edges and vertices. We theoretically show that halting may occur in geometric random walk kernels. We also empirically quantify its impact in simulated datasets and popular graph classification benchmark datasets. Our findings promise to be instrumental in future graph kernel development and applications of random walk kernels.

Monday December 7, 2015 19:00 - 23:59
210 C #56