This event has ended. View the official site or create your own event → Check it out
This event has ended. Create your own
View analytic
Monday, December 7 • 19:00 - 23:59
Fast and Accurate Inference of Plackett–Luce Models

Sign up or log in to save this to your schedule and see who's attending!

We show that the maximum-likelihood (ML) estimate of models derived from Luce's choice axiom (e.g., the Plackett-Luce model) can be expressed as the stationary distribution of a Markov chain. This conveys insight into several recently proposed spectral inference algorithms. We take advantage of this perspective and formulate a new spectral algorithm that is significantly more accurate than previous ones for the Plackett--Luce model. With a simple adaptation, this algorithm can be used iteratively, producing a sequence of estimates that converges to the ML estimate. The ML version runs faster than competing approaches on a benchmark of five datasets. Our algorithms are easy to implement, making them relevant for practitioners at large.

Monday December 7, 2015 19:00 - 23:59
210 C #49

Attendees (1)