This event has ended. View the official site or create your own event → Check it out
This event has ended. Create your own
View analytic
Tuesday, December 8 • 19:00 - 23:59
Winner-Take-All Autoencoders

Sign up or log in to save this to your schedule and see who's attending!

In this paper, we propose a winner-take-all method for learning hierarchical sparse representations in an unsupervised fashion. We first introduce fully-connected winner-take-all autoencoders which use mini-batch statistics to directly enforce a lifetime sparsity in the activations of the hidden units. We then propose the convolutional winner-take-all autoencoder which combines the benefits of convolutional architectures and autoencoders for learning shift-invariant sparse representations. We describe a way to train convolutional autoencoders layer by layer, where in addition to lifetime sparsity, a spatial sparsity within each feature map is achieved using winner-take-all activation functions. We will show that winner-take-all autoencoders can be used to to learn deep sparse representations from the MNIST, CIFAR-10, ImageNet, Street View House Numbers and Toronto Face datasets, and achieve competitive classification performance.

Tuesday December 8, 2015 19:00 - 23:59
210 C #11

Attendees (10)