This event has ended. View the official site or create your own event → Check it out
This event has ended. Create your own
View analytic
Monday, December 7 • 19:00 - 23:59
Nearly Optimal Private LASSO

Sign up or log in to save this to your schedule and see who's attending!

We present a nearly optimal differentially private version of the well known LASSO estimator. Our algorithm provides privacy protection with respect to each training data item. The excess risk of our algorithm, compared to the non-private version, is $\widetilde{O}(1/n^{2/3})$, assuming all the input data has bounded $\ell_\infty$ norm. This is the first differentially private algorithm that achieves such a bound without the polynomial dependence on $p$ under no addition assumption on the design matrix. In addition, we show that this error bound is nearly optimal amongst all differentially private algorithms.

Monday December 7, 2015 19:00 - 23:59
210 C #97