This event has ended. View the official site or create your own event → Check it out
This event has ended. Create your own
View analytic
Tuesday, December 8 • 19:00 - 23:59
Collaboratively Learning Preferences from Ordinal Data

Sign up or log in to save this to your schedule and see who's attending!

In personalized recommendation systems, it is important to predict preferences of a user on items that have not been seen by that user yet. Similarly, in revenue management, it is important to predict outcomes of comparisons among those items that have never been compared so far. The MultiNomial Logit model, a popular discrete choice model, captures the structure of the hidden preferences with a low-rank matrix. In order to predict the preferences, we want to learn the underlying model from noisy observations of the low-rank matrix, collected as revealed preferences in various forms of ordinal data. A natural approach to learn such a model is to solve a convex relaxation of nuclear norm minimization. We present the convex relaxation approach in two contexts of interest: collaborative ranking and bundled choice modeling. In both cases, we show that the convex relaxation is minimax optimal. We prove an upper bound on the resulting error with finite samples, and provide a matching information-theoretic lower bound.

Tuesday December 8, 2015 19:00 - 23:59
210 C #74

Attendees (4)