This event has ended. View the official site or create your own event → Check it out
This event has ended. Create your own
View analytic
Monday, December 7 • 19:00 - 23:59
Black-box optimization of noisy functions with unknown smoothness

Sign up or log in to save this to your schedule and see who's attending!

We study the problem of black-box optimization of a function $f$ of any dimension, given function evaluations perturbed by noise. The function is assumed to be locally smooth around one of its global optima, but this smoothness is unknown. Our contribution is an adaptive optimization algorithm, POO or parallel optimistic optimization, that is able to deal with this setting. POO performs almost as well as the best known algorithms requiring the knowledge of the smoothness. Furthermore, POO works for a larger class of functions than what was previously considered, especially for functions that are difficult to optimize, in a very precise sense. We provide a finite-time analysis of POO's performance, which shows that its error after $n$ evaluations is at most a factor of $\sqrt{\ln n}$ away from the error of the best known optimization algorithms using the knowledge of the smoothness.

Monday December 7, 2015 19:00 - 23:59
210 C #89