Loading…
This event has ended. View the official site or create your own event → Check it out
This event has ended. Create your own
View analytic
Tuesday, December 8 • 11:35 - 12:00
Newton-Stein Method: A Second Order Method for GLMs via Stein's Lemma

Sign up or log in to save this to your schedule and see who's attending!

We consider the problem of efficiently computing the maximum likelihood estimator in Generalized Linear Models (GLMs)when the number of observations is much larger than the number of coefficients (n > > p > > 1). In this regime, optimization algorithms can immensely benefit fromapproximate second order information.We propose an alternative way of constructing the curvature information by formulatingit as an estimation problem and applying a Stein-type lemma, which allows further improvements through sub-sampling andeigenvalue thresholding.Our algorithm enjoys fast convergence rates, resembling that of second order methods, with modest per-iteration cost. We provide its convergence analysis for the case where the rows of the design matrix are i.i.d. samples with bounded support.We show that the convergence has two phases, aquadratic phase followed by a linear phase. Finally,we empirically demonstrate that our algorithm achieves the highest performancecompared to various algorithms on several datasets.


Tuesday December 8, 2015 11:35 - 12:00
Room 210 A

Attendees (2)